

# **CERTIFICATION**

# AOAC Research Institute Performance Tested Methods<sup>SM</sup>

Certificate No.

051901

The AOAC Research Institute hereby certifies the method known as:

# LuciPac A3 Surface

manufactured by

Kikkoman Biochemifa Company 2-1-1, Nishi-shinbashi Minato-ku, Tokyo 1005-0003 Japan

This method has been evaluated in the AOAC Research Institute *Performance Tested Methods*<sup>SM</sup> Program and found to perform as stated in the applicability of the method. This certificate indicates an AOAC Research Institute Certification Mark License Agreement has been executed which authorizes the manufacturer to display the AOAC Research Institute *Performance Tested Methods* SM certification mark on the above-mentioned method for the period below. Renewal may be granted by the Expiration Date under the rules stated in the licensing agreement.

Scott Coates

Scott Coates, Senior Director Signature for AOAC Research Institute Issue Date

November 23, 2022

**Expiration Date** 

December 31, 2023

**AUTHORS** 

ORIGINAL VALIDATION: Natsumi Tanaka, Wataru Saito, and Mikio

Bakke

MODIFICATION NOVEMBER 2019: Kenta Sakurai and Kazunori

Nishimoto

Kikkoman Biochemifa Company 2-1-1, Nishi-shinbashi Minato-ku, Tokyo 105-0003

SUBMITTING COMPANY

Japan

METHOD NAME

LuciPac A3 Surface

**CATALOG NUMBER** 

60361

INDEPENDENT LABORATORY

NSF International 789 N. Dixboro Rd Ann Arbor, MI 48105

Q Laboratories 1930 Radcliff Drive Cincinnati, OH 45204 AOAC EXPERTS AND PEER REVIEWERS

Mark Carter<sup>1,4</sup>, Michael Brodsky<sup>2,4</sup>, Joseph Odumeru<sup>3,4</sup>

<sup>1</sup>MC2E, Tennessee, USA

<sup>2</sup> Brodsky Consultants, Ontario, CANADA

<sup>3</sup> University of Guelph, Ontario, CANADA

<sup>4</sup> Modification November 2019

#### APPLICABILITY OF METHOD

Analytes – Adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP)

Matrixes - Stainless steel

Performance claims – According to the linear regression and other statistical approaches, the LuciPac A3 Surface for Hygiene Monitoring is effective at detecting the presence of total adenylate (ATP+ADP+AMP) on stainless steel surfaces in food processing and food service facilities with an LOD of 3.3 fmol ATP, 0.9 fmol ADP and 1.8 fmol AMP.

# ORIGINAL CERTIFICATION DATE CERTIFICATION RENEWAL RECORD

May 22, 2019 Renewed annually through December 2023.

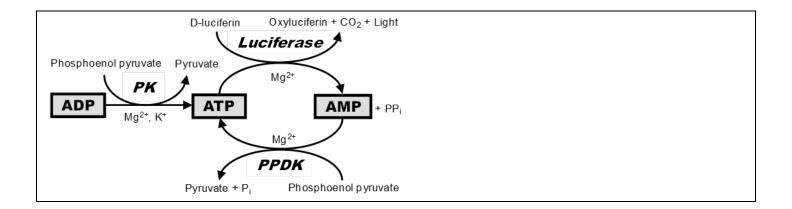
# METHOD MODIFICATION RECORD

1. November 2019 Level 2

# SUMMARY OF MODIFICATION

1. Addition of Lumitester Smart luminometer.

Under this AOAC *Performance Tested Methods*<sup>SM</sup> License Number, 051901 this method is distributed by:


- 1. AS ONE CORPORATION
- 2. FUJIFILM Wako Pure Chemical Corporation
- 3. KENIS LIMITED
- 4. Nippon Bacterial Test Co., Ltd.
- 5. Weber Scientific

Under this AOAC *Performance Tested Methods*<sup>SM</sup> License Number, 051901 this method is distributed as:

- 1. LuciPac A3 Surface
- 2. LuciPac A3 Surface
- 3. LuciPac A3 Surface
- LuciPac A3 Surface
   LuciPac A3 Surface

### PRINCIPLE OF THE METHOD (1)

The principle of detection of A3 is shown in Figure 1. Firefly luciferase can produce light in the presence of ATP, luciferin, oxygen and Mg<sup>2+</sup>. The amount of light produced is proportional to the amount of ATP in a sample and therefore ATP can be quantified by measuring the light produced through this reaction using a luminometer, showing a reading of Relative Light Units (RLUs). This is well known as the ATP method. In order to detect AMP simultaneously and maintain the light production, ATP was regenerated from AMP using pyruvate orthophosphate dikinase reactions (PPDK) in the presence of phosphoenol pyruvate, inorganic pyrophosphate (PPi) and Mg<sup>2+</sup> (Figure 1). Furthermore, ADP is converted to ATP by pyruvate kinase (PK, Figure 1). This allows the test to detect and quantify total adenylate and dramatically increases the signal available to the test.



#### **DISCUSSION OF THE VALIDATION STUDY (1)**

ATP tests are commonly used for an assessment of hygienic conditions in food industry. It should be noted that adenylate swabbing assays including ATP and the A3 test are not for microorganism detection but for cleaning verification because adenylates are not specific to microorganisms as shown in Table 3 and 4. However, monitoring the surface after cleaning is effective for preventing foodborne illness for the following reasons. First, food residues on surfaces are the source of nutrients for microorganisms. Second, organic matter can interfere with the antimicrobial activity of disinfectants (5) and decrease sanitation efficiency. Moreover, cleaning verification also seems to be effective for preventing food allergen cross-contact that can occur via the transfer of allergens in the same facility or on the same processing line for the allergen-containing and nonallergen-containing foods or ingredients.

A validation study of a conventional ATP monitoring test on stainless steel surfaces has been reported (3). Recently, the LuciPac A3 Surface Hygiene Monitoring System that can detect ATP+ADP+AMP (A3) has been developed and it shows more advanced sensitivity to determine food/organic debris compared to the conventional ATP tests (2). However, there is no report about the method validation for A3 assay. Here we report the validation study of the LuciPac A3 Surface Hygiene Monitoring System under the specific guidelines of the AOAC Research Institute *Performance Tested Method*<sup>SM</sup> program.

Firstly, pure analyte assays were performed to determine the LODs of ATP, ADP and AMP. The results in the method developer laboratory and the independent laboratory were consistent (Table 2). The LODs were around 10 RLU. According to the regression analyses, LODs can be expressed as ca. 2.5 fmol/assay on a molecular basis. RSD<sub>r</sub> values <20% were achieved at or above 2.5 fmol, though RSD<sub>r</sub> values of analyte-free water and 1.0 fmol adenylate were 20-60% (Table 1). This study also demonstrated good linearity of detection sensitivity [R<sup>2</sup> > 0.9862].

In order to determine the feasibility of detecting food matrix residues on stainless steel surfaces, the surface was treated with dilutions of 5 food matrices, i.e. raw poultry (raw chicken breast), ready to eat meat product (sliced deli ham), fresh produce and Juice (orange juice), heat processed milk and dairy (yogurt) and chocolate/bakery products (apple pie). All matrices showed sufficient reactivity as reported previously and a response that varied with dilution (Table 3). Method Developer Studies demonstrated that pure analyte solutions yielded <20% RSD<sub>r</sub> (Table 1), but RSD<sub>r</sub> values of each matrix solution for swabbing assays were <30%. Independent laboratory Studies demonstrated that RSD<sub>r</sub> values of each matrix solution for swabbing assays were <26.7% (orange juice) and <42.5% (ham, Table 3). The higher variations of matrixes were likely caused by additional factor, i.e. swabbing technique. Additionally, regarding insoluble food samples, solid and liquid are separated soon even after careful homogenization. This unavoidable heterogeneity may cause variability in the amount of matrix applied onto the plates. It should also be considered that all cotton swabs may not be able to pick up the dried solid particles completely. Consistent swabbing technique is important to minimize the variability. Swabbing an object thoroughly using the entire surface of the swab with rotation is ideal. Ideally the swab should be slightly bent when exerting appropriate pressing force.

Three pure cultures of microorganisms, a Gram-negative bacterium (*C. sakazakii*), a Gram-positive bacterium (*L. acidophilus*), and a yeast species (*S. cerevisiae*) were also tested using stainless steel surfaces. As is the case with food matrices, RLU responses to the organism concentration were observed (Table 4). RSDr values of each microbial solution for swabbing assays (10-35%) were also comparable to the food matrix study. Consequently, validation study using stainless steel surface demonstrated that the LuciPac A3 Surface Hygiene Monitoring System provides rapid and precise food/organic debris determination. Disinfectants are used in cleaning to kill microorganisms, and these chemicals may be left on the surface. According to our previous study, sodium hypochlorite (500 ppm), ethanol (80%) and quaternary ammonium (benzalkonium chloride, 0.1%) inhibit the A3 assays to some extent (ca. 10% inhibition) when 10 μL of disinfectants were added to the moistened swab (2). In this study, inhibition effects were evaluated using the stainless steel surface model to closely mimic industrial cleaning practices (Table 5 and 6). Since ethanol can be completely evaporated, another sanitizer for food processing, peracetic acid (6%), was tested in this study. Similar to our previous result, sodium hypochlorite did not affect the result significantly under these conditions. Quaternary ammonium inhibited 25-30% of the ATP signal. Contrary to our expectations, peracetic acid amplified the RLU output. Acid compounds generally reduce RLU values due to lowering pH of the reaction mixture from the optimum. The reason of the enhancement by peracetic acid on stainless steel is unclear. The peracetic acid that was used in this study is composed of hydrogen peroxide, acetic acid, buffer, chelator and stabilizer based on the manufacturer's information. Peracetic acid (boiling point: 118°C) seem to have been completely evaporated and other components might enhance the measurement values. As described above, the LuciPac A3 Surface h

Table 1. Method developer and independent laboratory pure analyte results using LuciPac A3 Surface/Lumitester PD-30 system. (A) Adenosine triphosphate (ATP), (B) Adenosine diphosphate (ADP) and (C) Adenosine monophosphate (AMP) (1)

(A)

| _                                 |                                                                                                                                   |                                                                                                                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                             | say                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                       |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | 0                                                                                                                                 | 1                                                                                                                                      | 2.5                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                         | 25                                                                                                                                                                                                                      | 100                                                                                                                                                                                                                                   |
| Mean RLU <sup>a</sup>             | 5.2                                                                                                                               | 7.0                                                                                                                                    | 10.3                                                                                                                              | 14.1                                                                                                                                                                                                                                                                                                                                        | 22.2                                                                                                                                                                                                                                                                                                                                                                                                       | 46.0                                                                                                                                                                                                                    | 179.4                                                                                                                                                                                                                                 |
| s <sub>r</sub> <sup>b</sup>       | 1.6                                                                                                                               | 2.0                                                                                                                                    | 1.3                                                                                                                               | 1.9                                                                                                                                                                                                                                                                                                                                         | 2.3                                                                                                                                                                                                                                                                                                                                                                                                        | 3.9                                                                                                                                                                                                                     | 8.7                                                                                                                                                                                                                                   |
| RSD <sub>r</sub> , % <sup>c</sup> | 31.1                                                                                                                              | 28.6                                                                                                                                   | 13.0                                                                                                                              | 13.1                                                                                                                                                                                                                                                                                                                                        | 10.1                                                                                                                                                                                                                                                                                                                                                                                                       | 8.5                                                                                                                                                                                                                     | 4.8                                                                                                                                                                                                                                   |
| Mean fmol <sup>d</sup>            | 0.1                                                                                                                               | 1.2                                                                                                                                    | 3.1                                                                                                                               | 5.3                                                                                                                                                                                                                                                                                                                                         | 9.9                                                                                                                                                                                                                                                                                                                                                                                                        | 23.6                                                                                                                                                                                                                    | 100.3                                                                                                                                                                                                                                 |
| Mean RLU                          | 3.1                                                                                                                               | 5.5                                                                                                                                    | 9.9                                                                                                                               | 13.2                                                                                                                                                                                                                                                                                                                                        | 21.4                                                                                                                                                                                                                                                                                                                                                                                                       | 41.7                                                                                                                                                                                                                    | 163.7                                                                                                                                                                                                                                 |
| S <sub>r</sub>                    | 1.7                                                                                                                               | 2.9                                                                                                                                    | 1.7                                                                                                                               | 1.3                                                                                                                                                                                                                                                                                                                                         | 2.4                                                                                                                                                                                                                                                                                                                                                                                                        | 4.3                                                                                                                                                                                                                     | 9.9                                                                                                                                                                                                                                   |
| RSD <sub>r</sub> , %              | 55.8                                                                                                                              | 53.0                                                                                                                                   | 16.8                                                                                                                              | 10.0                                                                                                                                                                                                                                                                                                                                        | 11.3                                                                                                                                                                                                                                                                                                                                                                                                       | 10.3                                                                                                                                                                                                                    | 6.0                                                                                                                                                                                                                                   |
| Mean fmol                         | -0.8                                                                                                                              | 0.7                                                                                                                                    | 3.5                                                                                                                               | 5.6                                                                                                                                                                                                                                                                                                                                         | 10.7                                                                                                                                                                                                                                                                                                                                                                                                       | 23.5                                                                                                                                                                                                                    | 100.3                                                                                                                                                                                                                                 |
| _                                 | S <sub>r</sub> <sup>b</sup> RSD <sub>r</sub> , % <sup>c</sup> Mean fmol <sup>d</sup> Mean RLU S <sub>r</sub> RSD <sub>r</sub> , % | $s_r^b$ 1.6<br>RSD <sub>r</sub> , $%^c$ 31.1<br>Mean fmol <sup>d</sup> 0.1<br>Mean RLU 3.1<br>$s_r$ 1.7<br>RSD <sub>r</sub> , $%$ 55.8 | $s_r^b$ 1.6 2.0<br>$RSD_r, \%^c$ 31.1 28.6<br>$Mean fmol^d$ 0.1 1.2<br>Mean RLU 3.1 5.5<br>$s_r$ 1.7 2.9<br>$RSD_r, \%$ 55.8 53.0 | s <sub>r</sub> <sup>b</sup> 1.6       2.0       1.3         RSD <sub>r</sub> , % <sup>c</sup> 31.1       28.6       13.0         Mean fmol <sup>d</sup> 0.1       1.2       3.1         Mean RLU       3.1       5.5       9.9         s <sub>r</sub> 1.7       2.9       1.7         RSD <sub>r</sub> , %       55.8       53.0       16.8 | s <sub>r</sub> <sup>b</sup> 1.6       2.0       1.3       1.9         RSD <sub>r</sub> , % <sup>c</sup> 31.1       28.6       13.0       13.1         Mean fmol <sup>d</sup> 0.1       1.2       3.1       5.3         Mean RLU       3.1       5.5       9.9       13.2         s <sub>r</sub> 1.7       2.9       1.7       1.3         RSD <sub>r</sub> , %       55.8       53.0       16.8       10.0 | $s_r^b$ 1.6 2.0 1.3 1.9 2.3<br>$RSD_r, \%^c$ 31.1 28.6 13.0 13.1 10.1<br>$Mean \ fmol^d$ 0.1 1.2 3.1 5.3 9.9<br>$Mean \ RLU$ 3.1 5.5 9.9 13.2 21.4<br>$s_r$ 1.7 2.9 1.7 1.3 2.4<br>$RSD_r, \%$ 55.8 53.0 16.8 10.0 11.3 | $s_r^b$ 1.6 2.0 1.3 1.9 2.3 3.9 $RSD_r$ , $%^c$ 31.1 28.6 13.0 13.1 10.1 8.5 $Mean\ Fmol^d$ 0.1 1.2 3.1 5.3 9.9 23.6 $Mean\ RLU$ 3.1 5.5 9.9 13.2 21.4 41.7 $s_r$ 1.7 2.9 1.7 1.3 2.4 4.3 $RSD_r$ , $%$ 55.8 53.0 16.8 10.0 11.3 10.3 |

|            |                      |      |      | ADI  | P, fmol/as | say  |      |       |
|------------|----------------------|------|------|------|------------|------|------|-------|
|            | -                    | 0    | 1    | 2.5  | 5          | 10   | 25   | 100   |
|            | Mean RLU             | 4.9  | 7.0  | 9.3  | 14.0       | 23.0 | 52.4 | 178.2 |
| Method     | S <sub>r</sub>       | 1.4  | 1.6  | 1.3  | 2.6        | 1.8  | 3.7  | 17.9  |
| developer  | RSD <sub>r</sub> , % | 28.0 | 23.3 | 13.5 | 18.7       | 7.7  | 7.2  | 10.0  |
|            | Mean fmol            | -0.5 | 0.7  | 2.1  | 4.8        | 10.0 | 26.9 | 99.5  |
|            | Mean RLU             | 4.0  | 7.0  | 9.9  | 15.0       | 21.6 | 48.3 | 187.5 |
| Independet | S <sub>r</sub>       | 1.5  | 1.6  | 1.0  | 2.1        | 2.8  | 4.8  | 8.7   |
| laboratory | RSD <sub>r</sub> , % | 37.3 | 22.3 | 10.0 | 13.7       | 13.1 | 10.0 | 4.6   |
|            | Mean fmol            | -0.3 | 1.4  | 3.0  | 5.8        | 9.4  | 24.0 | 100.3 |

(C)

|            | _                    |      |      | AM   | P, fmol/a | ssay |      |       |
|------------|----------------------|------|------|------|-----------|------|------|-------|
|            |                      | 0    | 1    | 2.5  | 5         | 10   | 25   | 100   |
|            | Mean RLU             | 6.5  | 8.6  | 10.0 | 16.7      | 24.8 | 52.8 | 195.6 |
| Method     | Sr                   | 1.2  | 2.1  | 1.3  | 1.4       | 2.9  | 3.4  | 15.8  |
| developer  | RSD <sub>r</sub> , % | 18.1 | 24.0 | 13.3 | 8.5       | 11.7 | 6.5  | 8.1   |
|            | Mean fmol            | 0.2  | 1.3  | 2.0  | 5.5       | 9.8  | 24.6 | 100.1 |
|            | Mean RLU             | 5.3  | 7.9  | 9.3  | 13.8      | 20.9 | 48.8 | 180.9 |
| Independet | $s_r$                | 1.3  | 1.9  | 1.4  | 2.3       | 2.2  | 2.0  | 11.3  |
| laboratory | RSD <sub>r</sub> , % | 25.2 | 24.2 | 15.2 | 17.0      | 10.7 | 4.1  | 6.3   |
|            | Mean fmol            | 0.2  | 1.7  | 2.5  | 5.0       | 9.1  | 24.9 | 100.1 |

<sup>&</sup>lt;sup>a</sup> Relative Light Unit. Ten replicates were tested at each concentration.

<sup>&</sup>lt;sup>b</sup> Standard Deviation of Repeatability.

<sup>&</sup>lt;sup>c</sup> Relative Standard Deviation of Repeatability.

<sup>&</sup>lt;sup>d</sup> Amounts of the adenylate were converted from the mean RLU values using the linearity curves in Figure 2 (Method developer) and 4 (Independent laboratory).

Table 2. Estimation of limit of detection (LOD) for adenosine triphosphate (ATP), adenosine diphosphate (ADP), and (C) adenosine monophosphate (AMP)from the method developer and independent laboratory data of pure analytes using LuciPac A3 Surface/Lumitester PD-30 system. (1)

|                            | Adopulata | $\overline{X}_0^a$ | s <sub>b</sub> | m <sup>c</sup> - | Calcul  | ated LOD,               |
|----------------------------|-----------|--------------------|----------------|------------------|---------|-------------------------|
|                            | Adenylate | Λ <sub>0</sub>     | Sb             | m -              | $RLU^d$ | fmol/assay <sup>e</sup> |
| Mothod                     | ATP       | 5.2                | 1.4292         | 0.0409           | 10.6    | 3.3                     |
| Method<br>developer        | ADP       | 4.9                | 0.3848         | 0.0955           | 7.3     | 0.9                     |
| developei                  | AMP       | 6.5                | 0.5710         | 0.0767           | 9.6     | 1.8                     |
| Indopondent                | ATP       | 3.1                | 1.5732         | 0.0511           | 9.1     | 3.0                     |
| Independent - laboratory - | ADP       | 4.0                | 1.5339         | 0.0400           | 9.7     | 2.9                     |
| laboratory =               | AMP       | 5.3                | 0.9548         | 0.0554           | 9.3     | 2.5                     |

<sup>&</sup>lt;sup>a</sup> The mean analytical value of the known negative matrix (Mean RLU for 0 fmol/assay in Table 1).

<sup>&</sup>lt;sup>b</sup> The intercept of the plots of standard deviation vs. mean LuciPac A3 Surface responses (Figure 3).

<sup>&</sup>lt;sup>c</sup> The slope of the plots of standard deviation vs. mean LuciPac A3 Surface responses (Figure 3).

<sup>&</sup>lt;sup>d</sup> Relative Light Unit. Each LOD (RLU) were calcurated using the formula:  $(\overline{X}_0 + 3.3 \times s_b)/(1-1.65 \, m)$ 

<sup>&</sup>lt;sup>e</sup> Each LOD (fmol/assay) was calculated by LOD (RLU) using the linearity curves in Figure 2 (Method developer) and 4 (Independent laboratory).

Table 3. Replicate Relative Light Unit (RLU), mean RLU, s<sub>r</sub> and RSD<sub>r</sub> of the LuciPac A3 Surface method determined with various matrixes (1)

| Matrix Ma |                           |            | Dilution |                  |                  |                  |     | Replica           | te RLL | J               |      |      |     | Mean |                             | RSD <sub>r</sub> , |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|----------|------------------|------------------|------------------|-----|-------------------|--------|-----------------|------|------|-----|------|-----------------------------|--------------------|
| Raw chicken Agen Chic                        | Matrix                    | Target RLU |          | 1                | 2                | 3                | 4   |                   |        |                 | 8    | 9    | 10  | -    | s <sub>r</sub> <sup>c</sup> |                    |
| Raw chicked Pieces**         500-200         5000         396         172         192         364         216         212         232         307         293         371         277         81         29           Portage         2007-5         30000         525         33         484         47         62         49         62         79         98         50         61         17         28           Assertande         1000-500         3000         686         533         734         68         710         168         308         30         21         25         20         72         24           Assertande         500-200         33000         128         33         102         112         129         115         135         38         30         29         77         73         20         72         72         74         166         66         16         20         75         140         14         12         29         18         13         15         14         14         12         29         18         13         15         14         14         12         29         18         16         17         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | 1000-500   |          |                  |                  |                  |     |                   |        |                 |      |      |     |      | 89                          |                    |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |            |          |                  |                  |                  |     |                   |        |                 |      |      |     |      |                             |                    |
| breasting leading leadi                        |                           |            |          |                  |                  |                  |     |                   | 112    |                 |      |      |     |      | 19                          |                    |
| Background   100   100   100   130   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   131   | breast                    |            |          |                  |                  |                  |     |                   |        |                 |      |      |     |      |                             |                    |
| Siche   1000-500   10000   686   531   734   698   710   1163   1075   1098   1018   944   866   218   226   226   226   226   227   228   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   229   | ,                         | Background |          |                  |                  | 13               | 21  |                   | 9      | 26              |      |      |     |      | 7                           |                    |
| Sliced del ham?         500-200         33000         262         182         282         194         294         270         343         380         392         347         295         72         24           4el ham?         200-75         100000         95         93         58         48         27         18         128         14         10         12         12           Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |            | 10000    | 686              | 533              | 734              |     | 710               | 1163   | 1075            | 1098 | 1018 | 944 | 866  | 218                         |                    |
| Silice   George   10000   128   93   102   112   129   115   135   128   148   107   120   17   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140    | Cl:l                      | 500-200    | 33000    |                  |                  |                  |     |                   | 270    |                 |      | 392  | 347 | 295  |                             |                    |
| Section   Sect   |                           |            |          | 128              |                  |                  | 112 | 129               | 115    | 135             | 128  | 148  | 107 |      | 17                          |                    |
| Packagnoun   13   15   14   14   12   29°   18   13   15   14   14   19   19   1000-500   5000   556   846   865   672   769   960   986   749   668   617   769   144   19   19   145   19   145   19   145   19   145   19   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   145   | deli ham"                 | <75        | 330000   | 95               | 93               | 58               | 48  | 57                | 58     | 69              | 69   | 57   | 55  | 66   | 16                          | 24                 |
| Orange juice         1000-500         500         556         846         865         672         769         960         986         749         688         617         769         144         17           Orange juice         500-200         10000         193         284         239         241         193         266         208         236         252         324         244         41         17           200-75         30000         25°         84         76         65         85         121         107         90         73         89         19         21           Background         18         20         25°         20         27         29         25         11         13         15         20         6         30           Yogurt         500-200         5000         386         313         306         304         294         468         642         559         523         364         416         124         30         20         75         160         14         19         104         181         86         19         160         15         18         10         11         11         15         12 </td <td></td> <td>Background</td> <td></td> <td>13</td> <td>15</td> <td>14</td> <td>14</td> <td>12</td> <td></td> <td>18</td> <td>13</td> <td>15</td> <td>14</td> <td>14</td> <td>2</td> <td>12</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | Background |          | 13               | 15               | 14               | 14  | 12                |        | 18              | 13   | 15   | 14  | 14   | 2                           | 12                 |
| Orange juice         200-75         30000         115         75         84         76         65         85         121         107         90         73         89         19         21           AC75         100000         25°         47         47         54         49         47         36         54         49         46         48         5         11           ACRITION SURVEY         18         20         25         20         27         29         25         11         13         15         20         6         30           ACRITION SURVEY         200         500         885         81         90         80         108         108         108         108         90         90         90         10         10         10         10         11         115         123         90         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <td></td> <td></td> <td>5000</td> <td>556</td> <td>846</td> <td>865</td> <td>672</td> <td>769</td> <td></td> <td>986</td> <td>749</td> <td>668</td> <td>617</td> <td>769</td> <td>144</td> <td>19</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            | 5000     | 556              | 846              | 865              | 672 | 769               |        | 986             | 749  | 668  | 617 | 769  | 144                         | 19                 |
| Property of the part of the    | •                         | 500-200    | 10000    | 193              | 284              | 239              | 241 | 193               | 266    | 208             | 236  | 252  | 324 | 244  | 41                          | 17                 |
| Property of the color of the    | Orange juice <sup>a</sup> | 200-75     | 30000    | 115              | 75               | 84               | 76  | 65                | 85     | 121             | 107  | 90   | 73  | 89   | 19                          | 21                 |
| Mathematical Heat Properties   1000-500   2000   857   811   902   940   1004   806   1068   807   980   906   908   90   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104   104        |                           | <75        | 100000   | 25 <sup>e</sup>  | 47               | 47               | 54  | 49                | 47     | 36              | 54   | 49   | 46  | 48   | 5                           | 11                 |
| Yogurt <sup>6</sup> 500-200         5000         386         313         306         304         294         468         642         559         523         364         416         124         30         25           Yogurt <sup>6</sup> 200-75         16000         124         119         104         181         86         108         172         106         111         115         123         30         25           Ary 1         32000         43         66         66         65         55         51         76         40         59         47         56         11         20           Apple pice         Background         23         9         18         16         11         17         12         20         18         15         16         4         27           Apple pice         500-200         300         586         709         64         688         646         714         623         621         43         35         41         40         31         42         43         33         32         41         40         33         41         40         42         42         43         43         43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | Background |          | 18               | 20               | 25               | 20  | 27                | 29     | 25              | 11   | 13   | 15  | 20   | 6                           | 30                 |
| Yogurt <sup>a</sup> 200-75         16000         124         119         104         181         86         108         172         106         111         115         123         30         25           4         25         32000         43         66         66         55         55         51         76         40         59         47         56         11         20           Background         23         9         18         16         11         17         12         20         18         15         16         4         27           Apple pie         1000-500         300         586         709         647         668         646         714         623         621         631         765         661         54         8           Apple pie         200-75         3000         67         89         74         101         107         112         77         81         107         98         91         16         17         17           Apple pie         200-75         3000         37         89         74         101         107         112         77         81         107         98 <t< td=""><td></td><td>1000-500</td><td>2000</td><td>857</td><td>811</td><td>902</td><td>940</td><td>1004</td><td>806</td><td>1068</td><td>807</td><td>980</td><td>906</td><td>908</td><td>90</td><td>10</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 1000-500   | 2000     | 857              | 811              | 902              | 940 | 1004              | 806    | 1068            | 807  | 980  | 906 | 908  | 90                          | 10                 |
| Section   Sect   |                           | 500-200    | 5000     | 386              | 313              | 306              | 304 | 294               | 468    | 642             | 559  | 523  | 364 | 416  | 124                         | 30                 |
| Non-Son   Son      | Yogurt <sup>a</sup>       | 200-75     | 16000    | 124              | 119              | 104              | 181 | 86                | 108    | 172             | 106  | 111  | 115 | 123  | 30                          | 25                 |
| Apple pie*         1000-500         300         586         709         647         668         646         714         623         621         631         765         661         54         8           Apple pie*         500-200         500         348         424         333         329         376         414         325         314         352         343         356         37         11           200-75         3000         67         89         74         101         107         112         77         81         107         98         91         16         17           4         75         5000         31         42         35         41         40         37         31         38         51         48         39         7         17           Background         19         14         18         15         16         14         19         13         23         11         16         4         22           500-200         80000         290         200         134         182         279         278         148         411         23         160         231         85         36.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | <75        | 32000    | 43               | 66               | 66               | 55  | 55                | 51     | 76              | 40   | 59   | 47  | 56   | 11                          | 20                 |
| Apple pie 6 500-200 500 348 424 333 329 376 414 325 314 352 343 356 37 11 200-75 3000 67 89 74 101 107 112 77 81 107 98 91 16 17 47 17 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | Background |          | 23               | 9                | 18               | 16  | 11                | 17     | 12              | 20   | 18   | 15  | 16   | 4                           | 27                 |
| Apple pie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | 1000-500   | 300      | 586              | 709              | 647              | 668 | 646               | 714    | 623             | 621  | 631  | 765 | 661  | 54                          | 8                  |
| Solice   S   |                           | 500-200    | 500      | 348              | 424              | 333              | 329 | 376               | 414    | 325             | 314  | 352  | 343 | 356  | 37                          | 11                 |
| Solice   S   | Apple pie <sup>a</sup>    | 200-75     | 3000     | 67               | 89               | 74               | 101 | 107               | 112    | 77              | 81   | 107  | 98  | 91   | 16                          | 17                 |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | <75        | 5000     | 31               | 42               | 35               | 41  | 40                | 37     | 31              | 38   | 51   | 48  | 39   | 7                           | 17                 |
| Sliced 200-75 10000 399e 118 173 167 108 186 88 173 105 142 140 36 25.8 200-75 12000 172 183 403e 281 124 170 101 124 80 90 147 63 42.5 200-75 12000 173 304e 114 114 78 70 101 124 80 90 147 63 42.5 200-75 12000 153e 50 39 43 45 66 45 48 55 46 49 8 16.3 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | Background |          | 19               | 14               | 18               | 15  | 16                | 14     | 19              | 13   | 23   | 11  | 16   | 4                           | 22                 |
| Sliced 200-75 10000 399e 118 173 167 108 186 88 173 105 142 140 36 25.8 200-75 12000 172 183 403e 281 124 170 101 124 80 90 147 63 42.5 200-75 12000 173 304e 114 114 78 70 101 124 80 90 147 63 42.5 200-75 12000 153e 50 39 43 45 66 45 48 55 46 49 8 16.3 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 1000-500   | 60000    | 785              | 543              | 395              | 465 | 1011 <sup>e</sup> | 461    | 620             | 534  | 571  | 503 | 542  | 113                         | 20.8               |
| Sitted deli hamb         200-75         120000         172         183         403e         281         124         170         101         124         80         90         147         63         42.5           200-75         160000         173         304e         114         114         78         70         111         61         57         130         101         38         37.6           <75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 500-200    | 80000    | 290              | 200              | 134              | 182 |                   | 278    | 148             | 411  | 223  | 160 | 231  | 85                          | 36.9               |
| deli ham <sup>b</sup> 200-75         120000         172         183         403 <sup>e</sup> 281         124         170         101         124         80         90         147         63         42.5           200-75         160000         173         304 <sup>e</sup> 114         114         78         70         111         61         57         130         101         38         37.6           40000         153 <sup>e</sup> 50         39         43         45         66         45         48         55         46         49         8         16.3           Background         39         42         34         34         37         42         37         28         40         37         37         4         11.5           Background         4000         692         686         516         596         712         721         631         648         661         474         634         83         13.1           500-200         8000         160         219         202         203         239         240         177         208         189         273         211         33         15.7           Orange juice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Slicad                    | 200-75     | 100000   | 399 <sup>e</sup> | 118              | 173              | 167 | 108               | 186    | 88              | 173  | 105  | 142 | 140  | 36                          | 25.8               |
| Color   Colo   |                           | 200-75     | 120000   | 172              | 183              | 403 <sup>e</sup> | 281 | 124               | 170    | 101             | 124  | 80   | 90  | 147  | 63                          | 42.5               |
| Karaba         40000         153e         50         39         43         45         66         45         48         55         46         49         8         16.3           Background         39         42         34         34         37         42         37         28         40         37         37         4         11.5           1000-500         4000         692         686         516         596         712         721         631         648         661         474         634         83         13.1           500-200         8000         160         219         202         203         239         240         177         208         189         273         211         33         15.7           Orange juice         200-75         10000         135         137         144         196         142         195         171         152         148         248         167         36         21.8           Orange juice         200-75         12000         121         244         160         125         225         157         187         215         141         168         174         42         24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | deli nam                  | 200-75     | 160000   | 173              | 304 <sup>e</sup> | 114              | 114 | 78                | 70     | 111             | 61   | 57   | 130 | 101  | 38                          | 37.6               |
| 1000-500 4000 692 686 516 596 712 721 631 648 661 474 634 83 13.1 500-200 8000 160 219 202 203 239 240 177 208 189 273 211 33 15.7   200-75 10000 135 137 144 196 142 195 171 152 148 248 167 36 21.8   200-75 12000 121 244 160 125 225 157 187 215 141 168 174 42 24.3 <a #ref="4" href="#ref=">&lt; 75</a> 40000 90 47 55 48 46 46 53 49 56 79 57 15 26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | <75        | 400000   | 153 <sup>e</sup> |                  | 39               | 43  | 45                | 66     | 45              | 48   | 55   | 46  | 49   | 8                           | 16.3               |
| Orange juice b \ \begin{array}{c ccccccccccccccccccccccccccccccccccc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | Background |          | 39               | 42               | 34               | 34  | 37                | 42     | 37              | 28   | 40   | 37  | 37   | 4                           | 11.5               |
| Orange juice b 200-75 10000 135 137 144 196 142 195 171 152 148 248 167 36 21.8 200-75 12000 121 244 160 125 225 157 187 215 141 168 174 42 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 1000-500   | 4000     | 692              | 686              | 516              | 596 | 712               | 721    | 631             | 648  | 661  | 474 | 634  | 83                          | 13.1               |
| Orange juice 200-75 12000 121 244 160 125 225 157 187 215 141 168 174 42 24.3<br><75 40000 90 47 55 48 46 46 53 49 56 79 57 15 26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 500-200    | 8000     | 160              | 219              | 202              | 203 | 239               | 240    | 177             | 208  | 189  | 273 | 211  | 33                          | 15.7               |
| 200-75     12000     121     244     160     125     225     157     187     215     141     168     174     42     24.3       <75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 b                       | 200-75     | 10000    | 135              | 137              | 144              | 196 | 142               | 195    | 171             | 152  | 148  | 248 | 167  | 36                          | 21.8               |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Orange Juice              | 200-75     | 12000    | 121              | 244              | 160              | 125 | 225               | 157    | 187             | 215  | 141  | 168 | 174  | 42                          | 24.3               |
| Background 41 40 38 40 40 39 31 <sup>e</sup> 40 38 43 40 2 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | <75        | 40000    | 90               | 47               | 55               | 48  | 46                | 46     | 53              | 49   | 56   | 79  | 57   | 15                          |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Background |          | 41               | 40               | 38               | 40  | 40                | 39     | 31 <sup>e</sup> | 40   | 38   | 43  | 40   | 2                           |                    |

<sup>&</sup>lt;sup>a</sup> Method developer study.

<sup>&</sup>lt;sup>b</sup> Independent laboratory study.

<sup>&</sup>lt;sup>c</sup> Standard Deviation of Repeatability.

 $<sup>^{\</sup>it d}$  Relative Standard Deviation of Repeatability.

 $<sup>^{\</sup>it e}$  Excluded from data analysis based on Grubbs' test.

Table 4. Replicate Relative Light Unit (RLU), mean RLU, s, and RSD, of the LuciPac A3 Surface method determined with various microbes (1)

| Organism       | Torget DIII | Theoretical           |      |      |     |                 | Replica | ate RLU |     |     |      |      | Mean | _ b | RSD <sub>r</sub> , |
|----------------|-------------|-----------------------|------|------|-----|-----------------|---------|---------|-----|-----|------|------|------|-----|--------------------|
| Organism       | Target RLU  | cfu/ml <sup>a</sup>   | 1    | 2    | 3   | 4               | 5       | 6       | 7   | 8   | 9    | 10   | RLU  | Sr  | % <sup>c</sup>     |
|                | 1000-500    | 2.0 x 10 <sup>6</sup> | 730  | 574  | 576 | 675             | 604     | 600     | 644 | 534 | 634  | 536  | 611  | 62  | 10                 |
|                | 500-200     | 8.6 x 10 <sup>5</sup> | 284  | 377  | 293 | 292             | 310     | 278     | 252 | 330 | 329  | 266  | 301  | 37  | 12                 |
| C. sakazaki    | 200-75      | 3.0 x 10 <sup>5</sup> | 146  | 93   | 103 | 108             | 139     | 127     | 108 | 144 | 123  | 139  | 123  | 19  | 15                 |
|                | <75         | 1.5 x 10 <sup>5</sup> | 87   | 65   | 71  | 48              | 34      | 31      | 67  | 86  | 61   | 56   | 61   | 19  | 31                 |
|                | Background  | 0                     | 17   | 16   | 35  | 28              | 13      | 14      | 36  | 20  | 19   | 17   | 22   | 8   | 39                 |
|                | 1000-500    | 2.0 x 10 <sup>5</sup> | 1258 | 907  | 585 | 660             | 1081    | 1086    | 648 | 791 | 674  | 776  | 847  | 227 | 27                 |
|                | 500-200     | $4.3 \times 10^4$     | 223  | 230  | 248 | 229             | 320     | 222     | 209 | 254 | 287  | 267  | 249  | 34  | 14                 |
| L. acidophilus | 200-75      | $2.0 \times 10^4$     | 64   | 74   | 56  | 82              | 146     | 53      | 63  | 103 | 113  | 85   | 84   | 29  | 35                 |
|                | <75         | 1.0 x 10 <sup>4</sup> | 34   | 41   | 39  | 64              | 39      | 40      | 44  | 49  | 42   | 52   | 44   | 9   | 19                 |
|                | Background  | 0                     | 10   | 9    | 11  | 12              | 31      | 25      | 8   | 9   | 11   | 15   | 14   | 8   | 55                 |
|                | 1000-500    | $6.7 \times 10^3$     | 989  | 1139 | 818 | 887             | 1117    | 912     | 926 | 926 | 1104 | 1114 | 993  | 116 | 12                 |
|                | 500-200     | $2.0 \times 10^3$     | 289  | 298  | 296 | 281             | 226     | 372     | 204 | 256 | 280  | 195  | 270  | 52  | 19                 |
| S. cerevisiae  | 200-75      | 6.7 x 10 <sup>2</sup> | 143  | 131  | 71  | 152             | 98      | 110     | 67  | 51  | 86   | 80   | 99   | 34  | 35                 |
|                | <75         | $3.3 \times 10^{2}$   | 42   | 31   | 25  | 39              | 33      | 27      | 26  | 18  | 22   | 27   | 29   | 7   | 25                 |
|                | Background  | 0                     | 11   | 8    | 11  | 33 <sup>d</sup> | 13      | 11      | 17  | 22  | 20   | 13   | 14   | 5   | 33                 |

 $<sup>^{\</sup>sigma}$  Each value was obtained by deviding the colony forming unit of each undiluted suspention by dilution factors. The actual amount of organism added to the coupon was 250  $\mu$ L.

Table 5. Replicate Relative Light Unit (RLU) and mean RLU for the effect of common sanitizers on the LuciPac A3 Surface method (1)

|                     |    |                                  |    |    |    |      |     |     | Re  | olicate       | RLU |      |      |      |      |      |     |      |
|---------------------|----|----------------------------------|----|----|----|------|-----|-----|-----|---------------|-----|------|------|------|------|------|-----|------|
|                     |    | Water 1000 fmol ATP <sup>a</sup> |    |    |    |      |     |     |     | 4000 fmol ATP |     |      |      |      |      |      |     |      |
| Sanitizer           | 1  | 2                                | 3  | 4  | 5  | Mean | 1   | 2   | 3   | 4             | 5   | Mean | 1    | 2    | 3    | 4    | 5   | Mean |
| None (Water)        | 23 | 17                               | 21 | 15 | 22 | 20   | 147 | 126 | 128 | 160           | 144 | 141  | 417  | 611  | 394  | 589  | 330 | 468  |
| Sodium Hypochlorite | 31 | 32                               | 22 | 30 | 32 | 29   | 148 | 127 | 180 | 168           | 180 | 161  | 382  | 534  | 539  | 506  | 611 | 514  |
| Peracetic acid      | 46 | 59                               | 83 | 58 | 77 | 65   | 237 | 415 | 208 | 322           | 276 | 292  | 1239 | 1343 | 1235 | 1352 | 984 | 1231 |
| Quaternary ammonium | 24 | 30                               | 28 | 30 | 22 | 27   | 145 | 134 | 110 | 109           | 150 | 130  | 334  | 451  | 282  | 422  | 327 | 363  |

<sup>&</sup>lt;sup>a</sup> Adenosine triphosphate

Table 6. Effect of common sanitizers on the LuciPac A3 Surface method (1)

|                     |       |       | Mean    | RLU <sup>a</sup> |                     |      |               |               |
|---------------------|-------|-------|---------|------------------|---------------------|------|---------------|---------------|
|                     | Wa    | iter  | 1000 fm | Inhibit          | ion, % <sup>c</sup> |      |               |               |
| Sanitizer           | $C^d$ | $S^e$ | $CA^f$  | $SA^g$           | CA                  | SA   | 1000 fmol ATP | 4000 fmol ATP |
| Sodium Hypochlorite | 20    | 31    | 141     | 161              | 468                 | 514  | -8            | -8            |
| Peracetic acid      | 20    | 65    | 141     | 292              | 468                 | 1231 | -187          | -160          |
| Quaternary ammonium | 20    | 20 27 |         | 130              | 468 363             |      | 29            | 25            |

<sup>&</sup>lt;sup>a</sup> Relative Light Unit

<sup>&</sup>lt;sup>b</sup> Standard Deviation of Repeatability.

<sup>&</sup>lt;sup>c</sup> Relative Standard Deviation of Repeatability.

<sup>&</sup>lt;sup>d</sup> Excluded from data analysis based on Grubbs' test.

<sup>&</sup>lt;sup>b</sup> Adenosine triphosphate

<sup>&</sup>lt;sup>c</sup> A negative percent inhibition correlated to an increase in signal. Calculated using mean RLU and the following equation: Inhibition (%) =  $\{1-[(SA-S)/(CA-C)]\}\times 100$ .

<sup>&</sup>lt;sup>d</sup> C = Signal from the control (analyte-free water) on the control surface (analyte-free water dried onto the stainless steel surface).

<sup>&</sup>lt;sup>e</sup> S = Signal from the control (analyte-free water) on the disinfectant surface (disinfectant dried onto the stainless steel surface).

 $<sup>^</sup>f$  CA = Signal from ATP on the control surface (analyte-free water and ATP dried onto the stainless steel surface).

<sup>&</sup>lt;sup>9</sup> SA = Signal from ATP on the disinfectant surface (disinfectant and ATP dried onto the stainless steel surface).

#### **DISCUSSION OF THE MODIFICATION APPROVED NOVEMBER 2019 (7)**

In the first validation study for the LuciPac A3/the Lumitester PD-30 Hygiene Monitoring System for the detection of ATP, ADP, and AMP from stainless steel surfaces, pure analyte solutions, detection of food residues and microbial residues on stainless steel surfaces, interference by disinfectants, selectivity of the method response, instrument variation, lot-to-lot consistency, and accelerated stability were evaluated. In this modification validation study for the new instruments, Lumitester Smart, pure analyte study and instrument variation were carried out in order to evaluate whether the ability of Lumitester Smart to detect pure ATP, ADP, and AMP was comparable with that of Lumitester PD-30. Detection of food residues and microbial residues on stainless steel surfaces, interference by disinfectants, selectivity of the method response, instrument variation, lot-to-lot consistency, and accelerated stability are accordingly ensured by the previous validation data because these factors depend on the performances of the swab.

The LODs for ATP, ADP, and AMP were 1.6, 3.5, and 3.0 fmol/assay, respectively (Table 2). Pure ATP, ADP, and AMP were detected by the LuciPac A3 Surface/Lumitester Smart system with good linearity ( $R^2 > 0.9866$ ) (Figure 2), and repeatability precision ( $RSD_r$ : 9.6-18.9 % for 1-100 fmol ATP/assay, 6.4-16.5 % for 2.5-100 fmol ADP/assay, 6.1-15.5 % for 2.5-100 fmol AMP/assay) (Table 1). In our previous report of pure analyte studies using LuciPac A3 Surface/Lumitester PD-30 system (AOAC *Performance Tested Method*<sup>SM</sup> 051901), the LODs for ATP, ADP, and AMP were 3.0-3.3, 0.9-2.9, 1.8-2.5 fmol/assay, respectively. The repeatability precision ( $RSD_r$ ) of the measurements were 4.8-16.8 % for 2.5-100 fmol ATP assay, 4.6-23.3 % for 1-100 fmol ADP/assay, and 4.1-24.2 % for 1-100 fmol AMP assay. The linearity ( $R^2$ ) of the measures were 0.9862 or higher.

In the instrument variation studies, no significant difference could be found at any ATP concentration among the three Lumitester Smart (Table 3). These results indicated that the performance of LuciPac A3 Surface/Lumitester Smart system to detect pure ATP, ADP, and AMP was comparable with that of LuciPac A3 Surface/Lumitester PD-30 system.

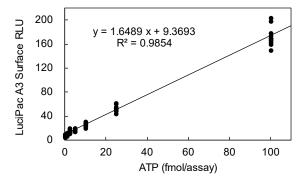
Table 1. Pure analyte results using LuciPac A3 Surface/Lumitester Smart system. (A) Adenosine triphosphate (ATP), (B) Adenosine diphosphate (ADP) and (C) Adenosine monophosphate (AMP) (7)

| Α                                 |      |      |      |               |      |      |       |
|-----------------------------------|------|------|------|---------------|------|------|-------|
|                                   |      |      | AT   | P, fmol/assay |      |      |       |
| <del>-</del>                      | 0    | 1    | 2.5  | 5             | 10   | 25   | 100   |
| Mean RLU <sup>a</sup>             | 7.6  | 9.7  | 14.9 | 17.1          | 26.2 | 53.1 | 173.6 |
| Sr <sup>b</sup>                   | 1.4  | 1.8  | 2.5  | 1.9           | 3.3  | 5.2  | 16.7  |
| RSD <sub>r</sub> , % <sup>c</sup> | 18.8 | 18.9 | 16.9 | 11.2          | 12.4 | 9.9  | 9.6   |
| Mean fmol <sup>d</sup>            | -1.1 | 0.2  | 3.4  | 4.7           | 10.2 | 26.5 | 99.6  |

|                      |      |      | AD   | P, fmol/assay |      |      |       |
|----------------------|------|------|------|---------------|------|------|-------|
| ·-                   | 0    | 1    | 2.5  | 5             | 10   | 25   | 100   |
| Mean RLU             | 6.7  | 10.7 | 11.9 | 15.9          | 25.0 | 50.7 | 181.9 |
| Sr                   | 2.2  | 2.5  | 2.0  | 2.3           | 3.3  | 3.8  | 11.6  |
| RSD <sub>r</sub> , % | 33.0 | 22.9 | 16.5 | 14.7          | 13.2 | 7.5  | 6.4   |
| Mean fmol            | -0.5 | 1.8  | 2.5  | 4.8           | 10.0 | 24.8 | 100.1 |

|                      |      |      | AN   | IP, fmol/assay |      |      |       |
|----------------------|------|------|------|----------------|------|------|-------|
| -                    | 0    | 1    | 2.5  | 5              | 10   | 25   | 100   |
| Mean RLU             | 7.3  | 10.9 | 13.2 | 16.0           | 25.8 | 51.0 | 181.6 |
| Sr                   | 2.3  | 2.9  | 2.0  | 1.5            | 3.3  | 3.6  | 11.1  |
| RSD <sub>r</sub> , % | 31.0 | 26.5 | 15.5 | 9.3            | 12.9 | 7.0  | 6.1   |
| Mean fmol            | -0.5 | 1.6  | 2.9  | 4.5            | 10.2 | 24.7 | 100.1 |

<sup>&</sup>lt;sup>a</sup> Relative Light Unit. Ten replicates were tested at each concentration.


<sup>&</sup>lt;sup>b</sup> Standard Deviation of Repeatability.

<sup>&</sup>lt;sup>c</sup> Relative Standard Deviation of Repeatability.

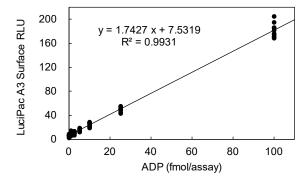

<sup>&</sup>lt;sup>d</sup> Amounts of the adenylate were converted from the mean RLU values using the linearity curves in Figure 2.

Figure 2. Dose response curves. LuciPac A3 Surface Relative Light Unit (RLU) responses for (A) adenosine triphosphate (ATP); (B) adenosine diphosphate (ADP); and (C) adenosine monophosphate (AMP). (7)

Α



В



c

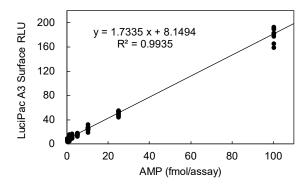



Table 2. Estimation of limit of detection (LOD) for adenosine triphosphate (ATP), adenosine diphosphate (ADP), and (C) adenosine monophosphate (AMP)from the data of pure analytes using LuciPac A3 Surface/Lumitester Smart system. (7)

|   | Adapulata | $ar{X}_0{}^a$ | c b       | mc               | Calculated LOD, |                         |  |  |  |
|---|-----------|---------------|-----------|------------------|-----------------|-------------------------|--|--|--|
|   | Adenylate | A 0°          | $S_b{}^b$ | m <sup>c</sup> — | $RLU^d$         | fmol/assay <sup>e</sup> |  |  |  |
| - | ATP       | 7.6           | 0.7497    | 0.0916           | 11.9            | 1.5                     |  |  |  |
|   | ADP       | 6.7           | 1.6060    | 0.0541           | 13.2            | 3.2                     |  |  |  |
|   | AMP       | 7.3           | 1.5531    | 0.0517           | 13.6            | 3.1                     |  |  |  |

<sup>&</sup>lt;sup>a</sup>The mean analytical value of the known negative matrix (Mean RLU for 0 fmol/assay in Table 1).

|                         |                      | Relative Light Unit (RLU) |                |                |                       |                |                |
|-------------------------|----------------------|---------------------------|----------------|----------------|-----------------------|----------------|----------------|
| ATP <sup>a</sup> , fmol | Replicate            | 23°C                      |                |                | 10°C                  |                |                |
|                         |                      | 1 <sup>d</sup>            | 2 <sup>d</sup> | 3 <sup>d</sup> | <b>1</b> <sup>d</sup> | 2 <sup>d</sup> | 3 <sup>d</sup> |
| 0                       | 1                    | 6                         | 8              | 7              | 7                     | 6              |                |
|                         | 2                    | 6                         | 8              | 7              | 8                     | 7              |                |
|                         | 3                    | 9                         | 7              | 7              | 5                     | 6              |                |
|                         | 4                    | 6                         | 5              | 6              | 4                     | 6              |                |
|                         | 5                    | 4                         | 4              | 5              | 8                     | 9              |                |
|                         | Mean                 | 6.2                       | 6.4            | 6.4            | 6.4                   | 6.8            | 7              |
|                         | Sr <sup>b</sup>      | 1.8                       | 1.8            | 0.9            | 1.8                   | 1.3            | 1              |
|                         | RSDr, % <sup>c</sup> | 28.9                      | 28.4           | 14.0           | 28.4                  | 19.2           | 17             |
| 50                      | 1                    | 96                        | 96             | 106            | 122                   | 110            | 1              |
|                         | 2                    | 99                        | 96             | 110            | 113                   | 109            |                |
|                         | 3                    | 104                       | 95             | 90             | 102                   | 105            | 1              |
|                         | 4                    | 90                        | 93             | 106            | 106                   | 112            | 1              |
|                         | 5                    | 94                        | 98             | 95             | 108                   | 114            | 1              |
|                         | Mean                 | 96.6                      | 95.6           | 101.4          | 110.2                 | 110.0          | 106            |
|                         | Sr                   | 5.3                       | 1.8            | 8.5            | 7.7                   | 3.4            | g              |
|                         | RSD <sub>r</sub> , % | 5.5                       | 1.9            | 8.4            | 7.0                   | 3.1            | 9              |
| 500                     | 1                    | 978                       | 943            | 964            | 1233                  | 931            | 12             |
|                         | 2                    | 994                       | 958            | 992            | 1092                  | 1208           | 10             |
|                         | 3                    | 941                       | 911            | 927            | 1141                  | 1012           | 10             |
|                         | 4                    | 964                       | 996            | 887            | 980                   | 1098           | 11             |
|                         | 5                    | 927                       | 881            | 878            | 999                   | 1075           | 10             |
|                         | Mean                 | 960.8                     | 937.8          | 929.6          | 1089.0                | 1064.8         | 1093           |
|                         | Sr                   | 27.1                      | 44.1           | 48.9           | 104.2                 | 103.0          | 91             |
|                         | RSD <sub>r</sub> , % | 2.8                       | 4.7            | 5.3            | 9.6                   | 9.7            | 8              |

<sup>&</sup>lt;sup>a</sup> Adenosine triphosphate.

#### REFERENCES CITED

- 1. Tanaka, N., Saito, W., and Bakke, M., Validation Study of LuciPac<sup>™</sup> A3 Surface for Hygiene Monitoring through Detection of ATP, ADP, and AMP from Stainless Steel Surfaces, AOAC *Performance Tested Methods* Certification number 051901. Approved May 2019.
- 2. Bakke, M., & Suzuki, S. (2018) J. Food Prot. 81, 729-737. doi: 10.4315/0362-028X.JFP-17-432
- 3. Viator, R., Gray, R. L., Sarver, R., Steiner, B., Mozola, M., & Rice, J. (2017) J. AOAC. Int. 100, 537-547. doi: 10.5740/jaoacint.16-0311
- 4. Porterfield, R. I., & Capone, J. J. (1984) Med. Devices Diagnostic Ind. 6, 45-50. doi: 10.1007/s11746-001-0401-1.
- 5. Rutala, W. A., & Weber, D. J. (2016) Am. J. Infect. Control 44, e69-76. doi: 10.1016/j.ajic.2015.10.039
- 6. Kajiyama, N. & Nakano, E. (1994) *Biosci. Biotech. Biochem.* **58**, 1170-1171. doi: 10.1271/bbb.58.1170
- 7. Sakurai, K. and Nishimoto, K., Evaluation of Additional Validation Study of New Luminometer for LuciPak™ A3 Surface for Hygiene Monitoring through Detection of ATP, ADP, and AMP, AOAC *Performance Tested Methods*™ certification number 051901. Approved November 2019

<sup>&</sup>lt;sup>b</sup>The intercept of the plots of standard deviation vs. mean LuciPac A3 Surface responses (Figure 3).

<sup>&</sup>lt;sup>c</sup>The slope of the plots of standard deviation vs. mean LuciPac A3 Surface responses (Figure 3).

<sup>&</sup>lt;sup>d</sup> Relative Light Unit. Each LOD (RLU) were calcurated using the formula:  $(\bar{X}_0 + 3.3 \times s_b)/(1-1.65 m)$ .

 $<sup>^</sup>e$  Each LOD (fmol/assay) was calculated by LOD (RLU) using the linearity curves in Figure 2.

<sup>&</sup>lt;sup>b</sup> Standard Deviation of Repeatability.

<sup>&</sup>lt;sup>c</sup> Relative Standard Deviation of Repeatability.

<sup>&</sup>lt;sup>d</sup> Serial No. 1: 1911053130070S, 2: 1849053130043S, 3: 1902053130100S.